On August 8, 2021, in their quest to produce significant fusion energy, scientists at the National Ignition Facility (NIF), Lawrence Livermore National Laboratory (LLNL), used 192 laser beams to illuminate the inside of a tiny gold cylinder encapsulating a spherical capsule filled with deuterium-tritium fuel. Even though researchers had followed this process many times before, using different parameters, this time the ensuing implosion produced a historic fusion yield of 1.37 megaJoules, as measured by a suite of neutron diagnostics. These included the MIT-developed and analyzed Magnetic Recoil Spectrometer (MRS). This result was published in the journal Physical Review Letters on August 8, the one-year anniversary of the ground-breaking development, unequivocally indicating that the first controlled fusion experiment reached ignition.
A
By providing and using a dozen diagnostics, implemented by MIT PhD students and staff, which have been critical for assessing the performance of an implosion, the HEDP division has contributed to the success of the ignition program at the NIF for more than a decade. The hundreds of co-authors on the paper attest to the collaborative effort that went into this milestone. MIT’s contributors included the only student co-authors.
“The students are responsible for implementing and using a diagnostic to obtain data important to the ICF program at the NIF, says Frenje. “Being responsible for running a diagnostic at the NIF has allowed them to actively participate in the scientific dialog and thus get directly exposed to cutting-edge science.”
“Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment” by H. Abu-Shawareb et al. (Indirect Drive ICF Collaboration), 8 August 2022, Physical Review Letters.
DOI: 10.1103/PhysRevLett.129.075001
Students involved from the MIT Department of Physics were Neel Kabadi, Graeme Sutcliffe, Tim Johnson, Jacob Pearcy, and Ben Reichelt; students from the Department of Nuclear Science and Engineering included Brandon Lahmann, Patrick Adrian, and Justin Kunimune.
In addition, former student Alex Zylstra PhD ’15, now a physicist at LLNL, was the experimental lead of this record implosion experiment.